Overblog
Suivre ce blog
Editer l'article Administration Créer mon blog
Le blog d'education et de formation

التوجهات المعاصرة في تعليم وتعلم رياضيات المرحلة الابتدائية/1

22 Mars 2009 , Rédigé par mazagan Publié dans #ديداكتيك المواد

الترابط بين الرياضيات والعلوم الأخرى:

يقصد به الربط بين الرياضيات والعلوم الأخرى مثل ( العلوم, اللغة العربية , والفنون والدراسات الاجتماعية )
 كفاءة استخدام تكنولوجيا التعليم والاتصالات:
يقصد بتكنولوجيا التعليم هو تطبيق العلم والنظرة الجديدة في التعليم تنعي بضرورة استخدام التكنولوجيا من خلال:
- استخدام الآلات الحاسبة.
- استخدام الحاسوب .
- استخدام شبكة ا لانترنت.
 مراعاة الفروق الفردية بين المتعلمين:

وينبغي في مراعاة الفروق الفئات التالية:
فئة الموهوبين----> وذلك للحفاظ على المكمون الإبداعي
فئة المبكرين ----> وذلك للحفاظ على المكمون التحصيلي
فئة منخفضي التحصيل ----> للحفاظ على المكمون الإنشائي

 تنمية القدرة على حل المشكلات لدى المتعلمين:
من الأركان المهمة في منظومة التعليم من خلال التدقيق في المشكلة الرياضية وتوظيف المفاهيم الرياضية.
 تنمية الفكر الناقد:
وهذا الجزء يساعد المتعلم على الاستنتاج والتفسير وهو من الأجزاء والأركان المهمة في عملية التعليم.
 إتاحة فرص التعلم التعاوني:
وهو يعني تمهيد الدرس ومقدمة الدرس ويكون التعلم في تقسيم الفصل إلى مجموعات يتبعون التعلم التعاوني بشكل منظم هادف لتحقيق أهداف الدرس .


فلسفة بناء منهج رياضيات المرحلة الابتدائية

 مبادئ تتعلق بالمتعلم:




 مبادئ تتعلق بالمعلم:




 مبادئ تتعلق بمحتوى المنهج الدراسي:




 مبادئ تتعلق بالبيئة التعليمية:




 مبادئ تتعلق بالعلاقات الإنسانية في منهج الرياضيات:




 مبادئ تتعلق بالمشاركة المجتمعية واتخاذ القرارات:





أهداف تدريس الرياضيات في المجال المعرفي

المستوى الأول

أولا: مستوى المعرفة والمعلومات ( التذكر):
ويقصد فيه القدرة على تذكر المعلومات والتعريفات والمصطلحات والمفاهيم.
ومن المستويات الفرعية لهذا المستوى
- معرفة المصطلحات:
المصطلح----> هو ذكر ماهية الشيء.
التعريف----> هو تعريف عن شيء معين بالكلام والعبارات.
المفهوم----> هو عبارة عن صورة ذهنية مجردة تتكون لدى التلميذ.

- معرفة حقائق خاصة:
ويتطلب هذا المستوى أن يسترجع التلميذ القوانين والعلاقات القائمة بين أجزاء بعض الوحدات.

- معرفة طرق التعامل مع الخصوصيات:
وهو يشمل على معرفة العادات المتبعة في حل المسائل الرياضية ومعرفة التصنيفات والفرعيات.


- معرفة الأساسيات والتعميمات:
وهو يشمل التجريدات الرياضية والأساسيات والتعميمات كذل يندرج تحت هذا المستوى النظريات الرياضية ومبادئ المنطق الرئيسية.

ثانيا: المهارات والأساليب الرياضية ( طرق الحل):
ويقصد فيه معرفة مدى قدرة التلميذ في إجراء التعليمات الحسابية بدقة بقرار الأمثلة التي شاهداها في الفصل .

المستوى الثاني : الاستيعاب

أولا : الترجمة:
وهو عبارة عن عملية عقلية لتغيير الأفكار من صورة رياضية إلى صورة أخرى مكافئة لها. ومن مميزات هذه العملية أن التفكير المستخدم فيها لا يتطلب تطبيق أو اكتشاف.
ثانيا: التفسير:
هو السلوك الرئيسي في تحديد وفهم الأوضاع الرئيسية الموجودة في وسيلة اتصال ما ويقصد به تحديد سبب حدوث الخطوة في المسالة لرياضية.
ثالثا: التنبؤ:
هو القدرة على استنتاج معلومات جديدة من خلال معلومات معطاة. والتنبؤ جزء من التفسير.
المستوى الثالث : التطبيق
هو القدرة على تطبيق المستويين السابقين ( التذكر والفهم) في مواقف جديدة ذات طرق غير مألوفة. حيث يتم تطبيق المعرفة والفهم في مواقف تتصف بالجدة والطرافة فطريقة الحل في هذا المستوى لا تهتم بالحل نفسه إنما في بناء خطوات الحل .
المستوى الرابع : القدرات العليا
أولا : التحليل:
هو الدراسة الرياضية للعمليات النهائية من حيث القدرة على تجزئة البيانات إلى أجزاء رياضية محددة تتجه نحو حل الموقف الرياضي. وينقسم إلى ( تحليل العناصر – تحليل العلاقات – تحليل الأساسيات)


ثانيا: التركيب:
هو العملية التي يقوم التلميذ من خلالها بتجميع الأفكار التي سبق تحليلها في عملية التحليل في ضوء المطلوب من السؤال.
ثالثا: التقويم:
هو القدرة في الحكم على أداء أعمال وأقوال وحلول وطرق.وهو يقوم على معايير معينة ومستويات محددة بحيث تكون كيفية أو كمية . وينقسم التقويم إلى ( الحكم في ظل الأدلة الداخلية – الحكم في ضوء المعايير الخارجية)
المفاهيم الرياضية

يقصد بالمفاهيم الرياضية أنها تجريد ذهني لخصائص مشتركة لمجموعة من الظواهر أو المصطلحات ذات الصلة. ولها دور فعال في عملية التعلم .
أولا: شروط المفاهيم:

- شرط الإثبات:
يشير هذا الشرط إلى إثبات أو تطبيق صفة مميزة معينة على شيء أو مثير ما ليكون مثالا على المفهوم.
- الشرط الربطي:
يقصد فيه وجود صفتين مميزتين أو أكثر ينبغي توافرهما معا في الشيء أو المثير لكي يكون مثالا على المفهوم.
- الشرط الفصلي أو اللاإقتراني:
هو تطبيق صفات مميزة منفصلة أو غير مقترنة بالأشياء أو المثيرات لتشكل أمثلة على المفهوم.
- الشرط المفرد:
يشير هذا الشرط إلى وجوب توافر صفة مميزة معينة إذا توافرت صفة مميزة أخرى لتحديد مثال على المفهوم.
- الشرط المزدوج:

ينص على توفر شرط متبادل بين صفتين بحيث إذا توافرت الأخرى حتما لتحديد أمثلة على المفهوم.
ثانيا: تحركات تدريس المفاهيم الرياضية:
تحرك الخاصية الواحدة ----> يقدم المعلم خاصية واحدة للمفهوم.
تحرك التحديد ----> يحدد المعلم الشيء الذي يطلق عليه المفهوم .
تحرك المقارنة ----> يحدد المعلم مفهوما ويبرز أوجه الشبه والاختلاف بينه وبين مفهوم أخر.
تحرك المثال( أمثلة الانتماء) ----> يعطي المعلم مثالا على المفهوم.
تحرك اللامثال ( أمثلة عدم الانتماء) ----> يعطي المعلم أمثلة تعاكس الأمثلة المنتمية إلى المفهوم.
تحرك التعريف ----> يعطي المعلم التعريف اللفظي للمفهوم وهو الأكثر شيوعا.
التعميمات والمبادئ الرياضية
هو عبارة تحدد علاقة بين مفهومين أو أكثر من المفاهيم الرياضية. ويدرس بطريقتين الأولى ( العرض المباشر) الثانية ( طريقة الاستقراء)
أولا : طريقة العرض في تدريس التعميمات الرياضية:
تحرك التقدم----> يقدم المعلم مقدمة تمهيدية عن التعميم.
تحرك الصياغة مع التفسير----> يعطي المعلم صياغة كلامية للتعميم.
تحرك الأمثلة----> يعطي المعلم أمثلة عن التعميم.
تحرك التدريب----> يطلب المعلم من الطلاب إعطاء أمثلة عن التعميم لم يتم ذكرها بالدرس.
ثانيا: الطريقة الاستقرائية في تدريس التعميمات الرياضية:
هي عبارة عن سلسلة من التحركات والأنشطة حيث تختلف عن طريقة العرض في موقع تحرك صياغة التعميم أي أن في الطريقة الاستقرائية تأتي صياغة التعميم في موقع متأخر من تلك السلسة.
أهداف تدريس الرياضيات في مجالات أخرى
أولا : المجال الوجداني:
الاستقبال: يكون المتعلم مدركا لفكرة ما أو ظاهرة .
الاستجابة: المشاركة الفعالة للمتعلم . والتفاعل مع الظاهرة.
التقدير: القيمة التي يعطيها المتعلم لشيء معين.
التنظيم: يهتم الطالب بتنظيم عدد من القيم وحل التعارض فيما بينها.
التمييز: يكون للطالب نسق قيمي يضبط سلوكه لوقت طويل وان تكون لديه ميول ضابطة لحياته.

مقاييس اتجاهات الطلاب نحو مادة الرياضيات
- اتجاهات الطلاب نحو المعلم.
- اتجاهات الطلاب نحو الاستمتاع بالمادة.
- اتجاهات الطلاب نحو قيمة المادة.
- اتجاهات الطلاب نحو طبيعة المادة.
- اتجاهات الطلاب نحو تعلم المادة.

ثانيا: المجال المهاري:
يقصد فيه المهارة في الدقة والسرعة في إنجاز العمل. أي تعلم الطالب لاستخدام الآلة الحاسبة والمسطرة كذلك الفرجار حتى تصبح لدية خبره في رسم الأشكال الهندسية وحساب المسأل الرياضية دون اللجوء إلى تلك الأدوات.
1. يتفاعل المتعلم بشكل أفضل في أنماط الحوار الحر والعمل الجماعي. 2. منهج الرياضيات يخاطب عقل وروح وعواطف وجسد المتعلم. 3. إبراز كل ما من شأنه تنمية الاتجاهات الإيجابية لدى المتعلم نحو مادة الرياضيات. 4. إحداث التوازن في شخصية المتعلم بحيث تصبح قادرة على التكيف الناجح من خلال اختيار بناء رياضي متوازن وسليم. 1. للمعلم دور بارز في تنمية الإبداع والابتكار لدى المتعلم. 2. للمعلم دور بارز في تنمية مهارات التفسير والاستنتاج والتفكير الناقد. 3. التعلم الذاتي والتربية المستدامة ثمرة أساسية للتعليم الجيد. 4. المعلم المشارك بدلا من المعلم الناقل. 1. المتعلم هو محور العملية التعليمية وليس النظام أو المعلم أساس في بناء المنهج المدرسي. 2. التحديث المستمر للمفاهيم العلمية المقدمة للمتعلم. 3. شمول محتوى المنهج الدراسي على كافة أنواع الأنشطة التعليمية ومصادر التعلم. 4. تحليل أنشطة المجتمع الجارية والتركيز عليها في الأنشطة التعليمية. 1. مبنى مدرسي متميز يوفر كل أسباب الراحة للدارسين والعاملين فيه. 2. أدوات ومختبرات وتجهيزات وفق أحدث المواصفات العالمية. 3. كثافة طلابية لكل فصل وفقا للمعايير التربوية السليمة. 4. مناخ تعليمي متميز يجعل من التعليم راحة ومتعة. 1. العلاقات الإنسانية أساس التعامل في المجتمع. 2. علاقات مبرمجة بين الأسرة والمدرسة. 3. العلاقات الطلابية – الطلابية هدف تربوي مهم. 4. علاقة الطالب- المعلم محل اهتمام كبير. 1. التخطيط الاستراتيجي مفتاح لتطوير المنهج المدرسي. 2. الإدارة الجماعية وفرق العمل بدلا من المركزية في الإدارة. 3. الجودة الشاملة نظرية إدارية فضلى لتعليم أجود. 4. اللوائح والقوانين مصممة بطريقة تحقق الأهداف التربوية من التعليم.

 

مبادئ ومعايير ومحتوى رياضيات المرحلة الابتدائية

مبادئ ومعايير الرياضيات المدرسية


مبادئ الرياضيات المدرسية :
المباديء هي عبارات محددة تعكس القواعد الأساسية والجوهرية لتعليم الرياضيات ذات النوعية العالية.
• مبدأ المساواة :
توفير الفرص التعليمية لجميع الطلاب بغض النظر عن خصائصهم الشخصية وخلفياتهم الأساسية وتقوم على :
- توقعات عاليه وفرص تعليمية للجميع.
- استيعاب الفروق الفردية.
- توفير المصادر للجميع.
• مبدأ المنهج:
أن يكون متناسقا ومترابطا بحيث يركز على الرياضيات المهمة وترابطها باتساق عبر المراحل الدراسية.
• مبدأ التعليم :
هو تعليم الرياضيات وتقع على عاتق المعلم ويقوم على الأسس التالية:
- التدريس الفعال بمعرفة وفهم الرياضيات.
- التدريس الفعال بوجود بيئة صفية تثير التحدي.
- التدريس الفعال نحو السعي المستمر للتحسين.
• مبدأ التعلم :
هو أن يستطيع الطالب تعلم الرياضيات وفهمها فتعلم الرياضيات مقرون بالفهم الأساسي له.
• مبدأ التقييم :
التقييم الجيد يدعم التعلم الجيد للطلاب فهو أداة مهمة لا تخاذ القرارات المهمة في التدريس.
• مبدأ التقنية :
وهي عنصر مهم في تعليم وتعلم الرياضيات وتقوم على استخدام التكنولوجيا في تعلم الطلاب كذلك تدعم التعليم الفعال للرياضيات ولها أثر في نوعية الرياضيات في التدريس.
معايير الرياضيات المدرسية :
عبارة عن مفاهيم ومعلومات وتعميمات ومهارات رياضية يجب أن يكتسبها الطلاب .
معايير المحتوى الرياضي:






• الأعداد والعمليات عليها :
- إدراك مفاهيم الأعداد وطريقة تمثيلها والعلاقات بينها.
- فهم معنى العمليات الحسابية وكيفية ارتباطها ببعضها البعض.
- اكتساب المهارة في إجراء العمليات الحسابية بدقة.
• الــجــبر:
- إدراك الأنماط والعلاقات والدوال.
- تمثيل وتحليل المواقف الرياضية والبنى الجبرية باستخدام الرموز الجبرية.
- استخدام النماذج الرياضية لتمثيل وفهم العلاقات الكمية.
- تحليل التغير في سياقات مختلفة.
• الهنـدسـة:
- تحليل صفات وخصائص الأشكال الهندسية ذات الأبعاد الثنائية والثلاثية.
- تعيين الإحداثيات ووصف العلاقات المكانية باستخدام الهندسة الإحداثية.
- تطبيق التحويلات والتماثلات لتحليل المواقف الرياضية.
- استخدام التمثيل البصري والنمذجة لحل المشكلات .
• القـيـاس:
- إدراك قابلية الأشياء للقياس وإدراك الوحدات.
- استخدام التقنيات المناسبة والأدوات والصيغ لتحديد القياسات.
• تحليل البيانات والاحتمال الرياضي:
- صياغة أسئلة يمكن تقديمها بالبيانات وجمع وتنظيم وعرض البيانات وثيقة الصلة بالإجابة عن تلك الأسئلة.
- اختيار واستخدام الطرق الإحصائية المناسبة لتحلي البيانات.
- تطوير وتقويم الاستدلالات والتنبؤات المبنية على البيانات.
- فهم وتطبيق المفاهيم و المباديء الأساسية للاحتمالات الرياضية.

معايير العمليات الرياضية :
• حل المشكلات :
- بناء معارف رياضية جديدة من خلال حل المشكلات.
- حل المشكلات التي تظهر في الرياضيات والسياقات الأخرى.
- استخدام وتكييف العديد من الاستراتيجيات المناسبة لحل المشكلات.
- تأمل وملاحظة إجراءات حل المشكلات الرياضية.
• التبرير والبرهان:
- إدراك أهمية التبرير والتفكير والبرهان كمظاهر أصلية للرياضيات.
- بناء واستقصاء التخمينات الرياضية.
- تطوير وتقويم الحجج والبراهين الرياضية.
- اختيار واستخدام أنواعا مختلفة من التبريرات وطرق البراهين.
• التواصل:
- تنظيم وتعزيز تفكير الطلبة الرياضي من خلال التواصل.
- نقل تفكير الطلبة الرياضي بتوضيح إلى أقرانهم الآخرين.
- تحليل وتقويم تفكيرهم واستراتيجياتهم.
- استخدام لغة الرياضيات للتعبير عن الأفكار الرياضية.
• التداخل:
- تعرف واستخدام التداخل خلال الأفكار الرياضية.
- فهم كيفية أن الأفكار الرياضية متداخلة.
- تطبيق الرياضيات خارج الرياضيات.
• التمثيل:
- بناء واستخدام تمثيلات لتنظيم تواصل الأفكار الرياضية.
- اختيار وتطبيق ترجمة التمثيلات الرياضية لحل المشكلات.
- استخدام التمثيلات لنمذجة وتفسير الظواهر الطبيعية والاجتماعية والرياضية.
1- الأعداد والعمليات عليها . 2- الـجـبر. 3- الهندسة. 4- القياس. 5- تحليل البيانات والاحتمالات.

الوحدة الثالثة:
& معايير تعليم الرياضيات

يقوم تعليم الرياضيات على أربع محاور رئيسية وهي:
• المحور الأول: المهمات------- > تستدعي حل المسائل والاستدلال الرياضي
• المحور الثاني: الحوار الصفي ------ >ويشمل ثلاثة معايير:
- دور المعلم في الحوار الصفي
- دور الطلبة في الحوار الصفي
- أدوات لإثراء الحوار الصفي

• المحور الثالث: البيئة ------- >يشجع على تنمية القوة الرياضية لدى الطلبة
• المحور الرابع: التحليل ------ >تحليل التدريس عن طريق متابعة الطلبة والاستماع إليهم وجمع معلومات عنهم

هناك ثلاثة تحركات هامة في تعليم وتعلم رياضيات المرحلة الإبتدائية

أولاً: بعض نماذج تعلم رياضيات المرحلة الإبتدائية:
التعلم :هو تغير في السلوك يكتسب من خلال خبرة ما، فتعلم الرياضيات في المرحلة الإبتدائية يحقق أهدافاً متعددة تبدأ من تدريبه على تناول أشياء محسوسة عندما يعد ويحسب ويقيس إلى أن يتمكن من التعامل رمزياً مع صور ذهنية، ويرى التربويون أن هناك تدرج يمكن وضعه في صورة متتابعة وهي:
(1) تعلم مهارات حركية حسية:
مثل استخدام فرجار دائرة ومسطرة لرسم قطعة مستقيمة أو زاوية

(2) تعلم مهارات حركية إدراكية:
كاستخدام منقلة في قياس زاوية أو مسطرة مدرجة لقياس طول معين أو رسم مثلث ذي أبعاد معلومة

(3) تعلم ترابطات عقلية:
مثل تعلم العمليات الحسابية ( الجمع والضرب) وبعض المصطلحات (العامل والمضاعف والعوامل الأولية)

(4) تعلم المفاهيم:
كتعلم مفهوم العد

(5) تعلم حل المشكلات:
كالعلاقة المتبادلة بين المحسوسات الفيزيائية والمجردات الرياضية






& أفكار بعض المهتمين بتقديم مفاهيم الرياضيات لدى أطفال المرحلة الإبتدائية
• وليم سوير:
يرى أن تعليم الرياضيات لابد أن يرتكز على تدريب التلميذ على الفهم والبصيرة كما يرى وليم سوير ( انه من المهم للطفل أن تكون لديه صورة بصرية للفكرة الرياضية تكون بمثابة مرتكز بصري يساعده على التجريد.

• جيروم برونر:
يرى برونر أن استراتيجية التدريس تسير في عدة مجالات وهي:
(1) خلق رغبة للتعلم عن طريق توفير بيئة وجو يشعر فيه التلاميذ بحرية التفكير الرياضي
(2) تشكيل المعرفة الرياضية المراد تقديمها في صورة يمكن فهمها للطفل
(3) تغيير تتابع تقديم المادة بحسب نوعية المتعلم
(4) ايجاد نوع من الدافعية في التعلم ( كالتحدي، الاستثارة الذهنية، حب الاستطلاع )

كما أن برونر قد قام بتحديد ثلاثة طرق لتمثيل المنهج وهي:
(1) الطريقة التمثيلية
(2) الطريقة التصويرية
(3)الطريقة الرمزية

• مستويات جانييه للتعلم:
وضح جانييه أن هناك ثمان خطوات مرتبة ترتيباً هرمياً تستخدم لتحليل الطبيعة السيكولوجية للمنهج وهذه الخطوات المتتابعة هي:
- التعلم الإشاري ---- >( الاقتران المزمن،تكرار اقتران المثير غير الشرطي بالمثير الشرطي ، الاستجابة المنعكسة اللاإرادية)
- التعلم بواسطة المثير/ الاستجابة ----- > ( الاستجابة تتم من خلال التكرار وهي مهمة في تعليم الرموز الرياضية)
- التسلسل الحركي ----- > (وضع روابط للمثير والاستجابة في سلسلة متتابعة وترتيب ملائم)
- الترابط اللفظي ------- > (حدوث ارتباطات المثير/ الاستجابة في المستوى اللفظي)
- التعلم بواسطة التمايز المتعدد ----- > (اختبار مثير من مجموعة مثيرات)
- تعلم المفاهيم ------- > (يتضمن فهم معنى أو فكرة)
- تعلم القاعدة أو الأساسيات ----- > ( يتضمن وضع مفهومين أو أكثر في علاقة ما)
- حل المشكلات ------- > (استخدام قواعد مكتسبة سابقها وتطبيقها في مواقف جديدة)

• مستويات برونيل للتعلم
قام برونيل بتطوير نموذج لمستويات التعلم، ويساعد هذا النموذج المعلم في تصنيف نوع التعلم في مهمة معينة من مهام التعلم، ويتكون التسلسل الهرمي لدى برونيل من أربع خطوات وهي:
(1) الترابط المعرفي ------- > (الرموز الرياضية، الكلمات ، الأعداد )
(2) تعلم المفاهيم ------ > (تميزات بنائية، تميزات أو فروق الألوان ، الحجم ، الزمن، الوضع في الفراق)
(3) تعلم القاعدة أو الأساسيات -------- > ( بديهيات،قوانين، تعميمات، قواعد)
(4) حل المشكلات ------- > (استخدام القواعد أو الأساسيات في مواقف غير مألوفة)

• دينز
تتمثل مراحل التعلم عند دينز في ستة مراحل وهي:
(1) اللعب
(2) الألعاب
(3) البحث خواص مشتركة
(4) التمثيل
(5) الترميز
(6)التشكيل أو الصياغة

ويفرق دينز بين نوعين من التفكير عند مواجهة مشكلة رياضية هما
(1) التفكير التحليلي
وفيه يقوم الفرد يتحليل منطقي للمشكلة وبنتقل بتنسيق مخطط من خطوة إلى أخرى
(2) التفكير الإنشائي
ويصفه بأنه تفكير مغامر يتجاوز فيه الشخص حدود النسق المنطقي

• نظرية بياجيه وتطبيقاتها في تدريس الرياضيات
تقوم نظرية بياجيه في النماء العقلي على أن العقل يقوم بمرحلتين هما
الاستقبال ------- > استقبال العقل لمعلومات جديدة
التسكين -------- > إعادة ترتيب معلومات العقل بصورة جديدة

& الملامح الرئيسية لنظرية بياجيه
(1) أساس التعلم يكمن في نشاط الطفل الذاتي
(2) ينتظم نشاط الطفل العقلي على شكل تركيبات
(3) يبدأ النشاط العقلي من خلال عمليتي التمثيل والموائمة
(4) التطور العقلي عبارة عن عملية اجتماعية تظهر بتفاعل الطفل مع البيئة
(5)اكتشف بياجيه أن الطفل يمر في تطوره العقلي بأربع مراحل هي:

• مرحلة الإحساس والحركة ( من الميلاد ------ > 1,5 سنة )
هي مرحلة ما قبل الكلام وما قبل استعمال الرموز حيث يتعلم الطفل أن ما يغيب عنه ليس موجود

• مرحلة ما قبل العمليات ( من2 ------ > 7 سنوات )
الطفل في هذه المرحلة غير موضوعي أي انه ينظر إلى الأمور بصورة شخصية ويركز على عامل واحد ويهمل بقية العوامل ولا يفرق بين الحقيقة والخيال ويرى الأشياء كما يرى نفسه

• مرحلة العمليات المحسوسة (من 7----- > 11 سنة )
يصبح الطفل في هذه المرحلة أكثر موضوعية( يحافظ على قواعد اللعبة ) ، يلعب ألعاب جماعية ، يمكنه ترتيب الأشياء حسب الطول والوزن والقيمة، لا يمكنه صياغة تعريف بينما يستطيع تذكر تعريف، التفكير المنطقي لدى الطفل في هذه المرحلة يكون ضعيف جداً

• مرحلة العمليات الشكلية أو المجردة (من 11 سنة فما فوق)
يصبح الطفل في هذه المرحلة قادراً على ممارسة التفكير العلمي واستخدام المنطق الرياضي، يستطيع التعامل مع الرموز والعلاقات التي تعتمد على الفروض والبديهيات والقيام بعمليات الاستدلال القياسي

(5) الإدراك الحسي هو نشاط حسي يقوم به عقل الطفل بتجميع كل ما لديه من إحساسات
(6) وجود علاقة زمنية بين نمو قدرة الطفل على الإحساس بالشيء ونمو مقدرته على تكوين صورة عقلية للشيء
(7) تبرز تصورات الطفل عن التجاوز ، الانفصال، الترتيب ، الانقلاب ، الاستمرار
(8)تطور مفهوم العدد عند الطفل

& عوامل النمو العقلي عند بياجيه
- النضج
- الخبرة
- التفاعل الاجتماعي
- التوازن

& تفسيرات خاطئة لنظرية بياجيه
- مراحل النمو ترتبط طردياً بالعمر
- التعلم يمكن أن يحدث بمعزل عن الأقران

& تطبيقات نظرية بياجيه
(1) تخطيط المنهج المدرسي في ضوء المراحل التي مر بها الدارس
(2) تهيئة الدارس للخبرة الجديدة
(3) تقديم الموضوعات من الملموس إلى المجرد
(4) ألا يقدم برهان رياضي إلا بعد سن 12 سنة
(5) لابد أن تتوافق طريقة التدريس بالطريقة التي يتعلم بها الطفل


ثانياً: بعض نماذج تعليم رياضيات المرحلة الابتدائية

(1) نموذج العرض المباشر:
في نموذج العرض المباشر المعلم هو المسيطر والمتحدث والطفل مستقبل ، فذا النموذج فعال في تقديم المفاهيم والمبادئ والمهارات في وقت قصير، ولكنه غير فعال في تنمية مهارات البرهان الرياضي وتنمية مهارات حل المشكلات وطرق التفكير وتنمية الابداع
• خطوات العرض المباشر
(1) إخبار الطلاب بأهداف الدرس
(2) تسمية الموضوع
(3) مراجعة التعلم السابق
(4) تقديم أمثلة متنوعة على موضوع الدرس
(5) تقديم لا أمثلة
(6)التقويم البعدي لمعرفة مدى تحقيق الأهداف

(2) المناقشة
يقوم هذا النموذج على أساس أن الأسئلة والمناقشات تتم بين جميع أطراف العملية التعليمية ، فالمدرس قد يسأل وطالب أو أكثر من طالب قد يجيب، ومن مميزات أسلوب المناقشة انه فعال في تنمية ثقة الطالب بنفسه وتنمية روح الديمقراطية لديه

(3) النموذج الحلازوني للتعليم والتعلم
النموذج الحلازوني هو نموذج يضم تحته نماذج أخرى لتعليم الرياضيات، ويتميز بإجراء تتابعي لتعليم المفاهيم والمبادئ بحيث أن كل مفهوم وكل مبدأ يقدم ويمثل للطلاب في شكل سلسلة متتالية من التعاريف والأمثلة والتطبيقات المتصاعدة على فترة زمنية طويلة متقطعة

(4) نموذج منظم الخبرة المتقدم
يهتم هذا النموذج بتقديم الأفكار الأكثر شمولية أولاً ثم الأقل شمولية ثم الأقل،فمنظم الخبرة المتقدم ليس طريقة تدريس ولكن هو مقدمة يدرس بعد سن 12 سنة،
& عناصر نموذج منظم الخبرة المتقدم:
(1) الالتزام بالمسلمات الأساسية للنموذج
(أ‌) التفاضل المتوالي ------ > تقديم الأفكار الأكثر شمولية والأكثر خصوصية
(ب‌) التوفيق التكاملي ------- > توافق وترابط المعلومات الجديدة بالخبرة السابقة للمتعلم

(2) تقديم منظم الخبرة المتقدم للطلاب
(3) اختيار الأنشطة التي تلي تقديم المنظم


(5) نموذج إتقان التعلم:
يفترض نموذج كارول أن الطلبة قادرون بأنفسهم على تحقيق الأهداف التعليمية بقدر ما يسمح لهم بذلك، وحدد بلوم نتائج التعليم في ثلاثة أمور أساسية وهي
- التحصيل ( اكتساب المعرفة)
- النتائج الانفعالية (الاتجاهات)
- تحسين سرعة التعلم
• مبادئ نموذج التعلم حتى الإتقان
(1) وضوح العرض ------ > استخدام وسائل عرض ووسائل تعليمية مناسبة
(2) التعزيز ------- > إثابة الاستجابة الصحيحة
(3) التغذية الراجعة ------ > تعديل استجابة الإنسان في ضوء استجابته السابقة
(4) التصحيح -------- > الإفادة بالطرق الصحيحة للحل

• خطوات بلوم لتنفيذ نموذج إتقان التعلم
- تقسيم المحتوى إلى وحدات وتقسيم الوحدات إلى مواضيع أصغر
- تحديد المفاهيم والمهارات والمبادئ المطلوب تعلمها في كل درس
- عمل نماذج اختبارات متكافئة على كل درس
- تدريس الدرس الأول متبعاً مبادئ نموذج إتقان التعلم
- تطبيق نموذج رقم (1) على الدرس

(6) النموذج الاستقصائي:
هو عملية فحص واختبار موقف ما بحثاً عن معلومات وحقائق صادقة،والاستقصاء هو أسلوب وتخصص في توسيع المعارف من خلال البحث، ويتم اتباع الأسلوب الاستقصائي في تدريس الرياضيات بعدة خطوات هي:
- صياغة سؤال أو مواجهة موقف
- إنماء خطوات إجرائية وتجميع بيانات
- استخدام الإجراءات والمعلومات لإعادة تنظيم المعلومات الموجودة
- تحليل وتقويم عملية الاستقصاء

(7) النموذج الاستقرائي الاستدلالي:
يعتمد هذا النموذج في الوصول إلى المعرفة الرياضية عن طريق طريقتين هما:
- الطريقة الاستقرائية
- الطريقة الاستدلالية

ثالثاً: بعض الفرص التعليمية/ التعلمية في تعليم رياضيات المرحلة الابتدائية
& فرص تعليم وتعلم حل المشكلات
• شروط المشكلة
- تناسب مستوى الطلاب
- واضحة وغير مبهمة
- لها أكثر من طريقة للحل
- تساعد الطلاب على استخدام المفاهيم والمهارات السابقة

• دور المعلم في أسلوب حل المشكلات
- هل قرأت المعطيات؟
- هل حددت المطلوب؟
- هل يمكن تمثيل المشكلة برسم؟
- هل درست مشكلة مشابهة؟
- هل عندك فكرة للحل؟
- قم بتنفيذ الحل
- تصحيح الحل

-

 

Partager cet article

Commenter cet article